141 research outputs found

    Peroxisome Proliferator-Activated Receptors in HBV-Related Infection

    Get PDF
    Thirty years after its discovery, the hepatitis B virus (HBV) still remains a major global public health problem. Worldwide, two billion subjects have been infected, 350 million have a chronic infection and more than 600 000 die annually of HBV-related liver disease or hepatocellular carcinoma; new infections occur because of the presence of a large reservoir of chronic carriers of the virus. Since a decade several studies describe the interrelations between HBV and nuclear receptors and more particularly the peroxisome proliferator-activated receptors (PPARs). After a brief introduction, this review will make a rapid description of HBV incidence and biology. Then a report of the literature on the role of PPARs on viral transcription and replication will be developed. Finally, the role of HBV on PPARγ expression and activity will be discussed. Concluding remarks and perspectives will close this review

    High-Quality Fault-Resiliency in Fat-Tree Networks (Extended Abstract)

    Full text link
    Coupling regular topologies with optimized routing algorithms is key in pushing the performance of interconnection networks of HPC systems. In this paper we present Dmodc, a fast deterministic routing algorithm for Parallel Generalized Fat-Trees (PGFTs) which minimizes congestion risk even under massive topology degradation caused by equipment failure. It applies a modulo-based computation of forwarding tables among switches closer to the destination, using only knowledge of subtrees for pre-modulo division. Dmodc allows complete rerouting of topologies with tens of thousands of nodes in less than a second, which greatly helps centralized fabric management react to faults with high-quality routing tables and no impact to running applications in current and future very large-scale HPC clusters. We compare Dmodc against routing algorithms available in the InfiniBand control software (OpenSM) first for routing execution time to show feasibility at scale, and then for congestion risk under degradation to demonstrate robustness. The latter comparison is done using static analysis of routing tables under random permutation (RP), shift permutation (SP) and all-to-all (A2A) traffic patterns. Results for Dmodc show A2A and RP congestion risks similar under heavy degradation as the most stable algorithms compared, and near-optimal SP congestion risk up to 1% of random degradation

    Cannabinoid CB2 Receptor Potentiates Obesity-Associated Inflammation, Insulin Resistance and Hepatic Steatosis

    Get PDF
    BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-). PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorder

    L-Ilf3 and L-NF90 Traffic to the Nucleolus Granular Component: Alternatively-Spliced Exon 3 Encodes a Nucleolar Localization Motif

    Get PDF
    Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins

    A histologic scoring system for prognosis of patients with Alcoholic hepatitis

    Get PDF
    BACKGROUND & AIMS: There is no histologic classification system to determine prognoses of patients with alcoholic hepatitis (AH). We identified histologic features associated with disease severity and created a histologic scoring system to predict short-term (90-day) mortality. METHODS: We analyzed data from 121 patients admitted to the Liver Unit (Hospital Clinic, Barcelona, Spain) from January 2000 to January 2008 with features of AH and developed a histologic scoring system to determine the risk of death using logistic regression. The system was tested and updated in a test set of 96 patients from 5 academic centers in the United States and Europe, and a semiquantitative scoring system called the Alcoholic Hepatitis Histologic Score (AHHS) was developed. The system was validated in an independent set of 109 patients. Interobserver agreement was evaluated by weighted κ statistical analysis. RESULTS: The degree of fibrosis, degree of neutrophil infiltration, type of bilirubinostasis, and presence of megamitochondria were independently associated with 90-day mortality. We used these 4 parameters to develop the AHHS to identify patients with a low (0-3 points), moderate (4-5 points), or high (6-9 points) risk of death within 90 days (3%, 19%, and 51%, respectively; P < .0001). The AHHS estimated 90-day mortality in the training and test sets with an area under the receiver operating characteristic value of 0.77 (95% confidence interval, 0.71-0.83). Interrater agreement values were 0.65 for fibrosis, 0.86 for bilirubinostasis, 0.60 for neutrophil infiltration, and 0.46 for megamitochondria. Interestingly, the type of bilirubinostasis predicted the development of bacterial infections. CONCLUSIONS: We identified histologic features associated with the severity of AH and developed a patient classification system that might be used in clinical decision making

    Systemic inflammatory response and serum lipopolysaccharide levels predict multiple organ failure and death in alcoholic hepatitis

    Get PDF
    Alcoholic hepatitis (AH) frequently progresses to multiple organ failure (MOF) and death. However, the driving factors are largely unknown. At admission, patients with AH often show criteria of systemic inflammatory response syndrome (SIRS) even in the absence of an infection. We hypothesize that the presence of SIRS may predispose to MOF and death. To test this hypothesis, we studied a cohort including 162 patients with biopsy-proven AH. The presence of SIRS and infections was assessed in all patients, and multivariate analyses identified variables independently associated with MOF and 90-day mortality. At admission, 32 (19.8%) patients were diagnosed with a bacterial infection, while 75 (46.3%) fulfilled SIRS criteria; 58 patients (35.8%) developed MOF during hospitalization. Short-term mortality was significantly higher among patients who developed MOF (62.1% versus 3.8%, P <0.001). The presence of SIRS was a major predictor of MOF (odds ratio = 2.69, P=0.025) and strongly correlated with mortality. Importantly, the course of patients with SIRS with and without infection was similar in terms of MOF development and short-term mortality. Finally, we sought to identify serum markers that differentiate SIRS with and without infection. We studied serum levels of high-sensitivity C-reactive protein, procalcitonin, and lipopolysaccharide at admission. All of them predicted mortality. Procalcitonin, but not high-sensitivity C-reactive protein, serum levels identified those patients with SIRS and infection. Lipopolysaccharide serum levels predicted MOF and the response to prednisolone

    Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis

    Get PDF
    Alcoholic hepatitis (AH) is a life-threatening condition characterized by profound hepatocellular dysfunction for which targeted treatments are urgently needed. Identification of molecular drivers is hampered by the lack of suitable animal models. By performing RNA sequencing in livers from patients with different phenotypes of alcohol-related liver disease (ALD), we show that development of AH is characterized by defective activity of liver-enriched transcription factors (LETFs). TGFβ1 is a key upstream transcriptome regulator in AH and induces the use of HNF4α P2 promoter in hepatocytes, which results in defective metabolic and synthetic functions. Gene polymorphisms in LETFs including HNF4α are not associated with the development of AH. In contrast, epigenetic studies show that AH livers have profound changes in DNA methylation state and chromatin remodeling, affecting HNF4α-dependent gene expression. We conclude that targeting TGFβ1 and epigenetic drivers that modulate HNF4α-dependent gene expression could be beneficial to improve hepatocellular function in patients with AH

    Evaluation of laboratory tests for cirrhosis and for alcohol use, in the context of alcoholic cirrhosis

    Get PDF
    International audienceLaboratory tests can play an important role in assessment of alcoholic patients, including for evaluation of liver damage and as markers of alcohol intake. Evidence on test performance should lead to better selection of appropriate tests and improved interpretation of results. We compared laboratory test results from 1578 patients between cases (with alcoholic cirrhosis; 753 men, 243 women) and controls (with equivalent lifetime alcohol intake but no liver disease; 439 men, 143 women). Comparisons were also made between 631 cases who had reportedly been abstinent from alcohol for over 60 days and 364 who had not. ROC curve analysis was used to estimate and compare tests' ability to distinguish patients with and without cirrhosis, and abstinent and drinking cases. The best tests for presence of cirrhosis were INR and bilirubin, with areas under the ROC curve (AUCs) of 0.91~\textpm~0.01 and 0.88~\textpm~0.01, respectively. Confining analysis to patients with no current or previous ascites gave AUCs of 0.88~\textpm~0.01 for INR and 0.85~\textpm~0.01 for bilirubin. GGT and AST showed discrimination between abstinence and recent drinking in patients with cirrhosis, including those without ascites, when appropriate (and for GGT, sex-specific) limits were used. For AST, a cut-off limit of 85~units/L gave 90% specificity and 37% sensitivity. For GGT, cut-off limits of 288~units/L in men and 138~units/L in women gave 90% specificity for both and 40% sensitivity in men, 63% sensitivity in women. INR and bilirubin show the best separation between patients with alcoholic cirrhosis (with or without ascites) and control patients with similar lifetime alcohol exposure. Although AST and GGT are substantially increased by liver disease, they can give useful information on recent alcohol intake in patients with alcoholic cirrhosis when appropriate cut-off limits are used
    corecore